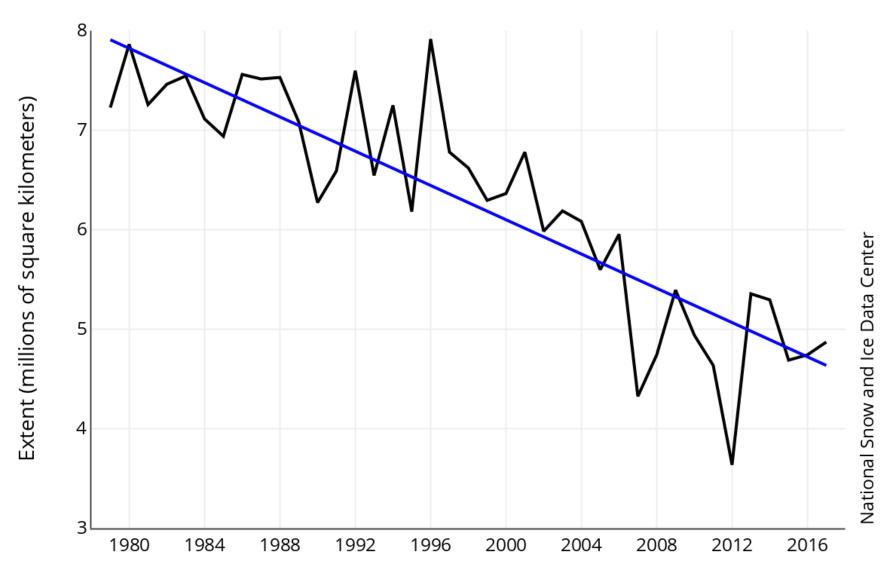
Detection and Attribution of Arctic Climate Change

Jen Kay University of Colorado-Boulder

Plus many collaborators including especially Ariel Morrison, Helene Chepfer, Tristan L'Ecuyer, and Marika Holland

Thin (40 cm) first-year ice, clouds, and a seal near Barrow, Alaska – June 2016

Average Monthly Arctic Sea Ice Extent September 1979 - 2017

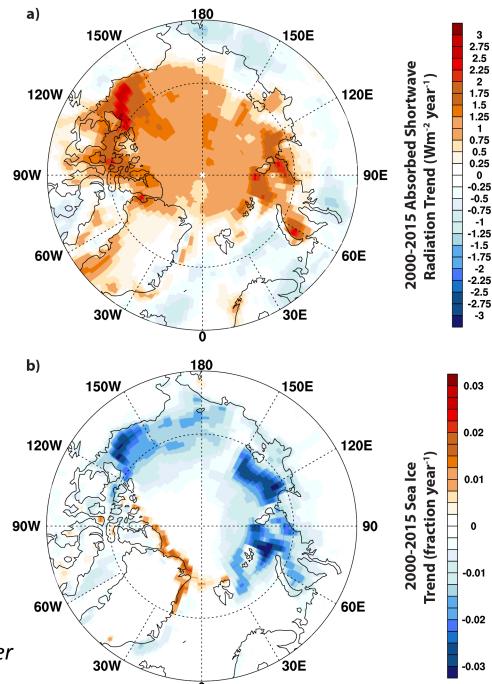


http://nsidc.org/arcticseaicenews/files/2017/10/monthly_ice_09_NH_v2.1.png

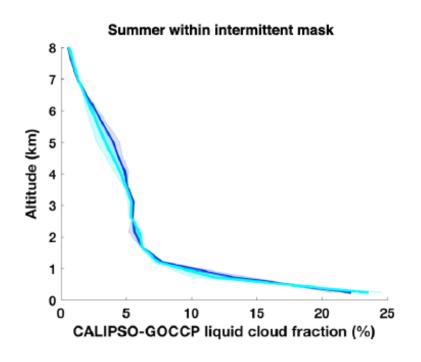
Summer absorbed shortwave radiation is increasing.

Summer Arctic sea ice concentrations are decreasing.

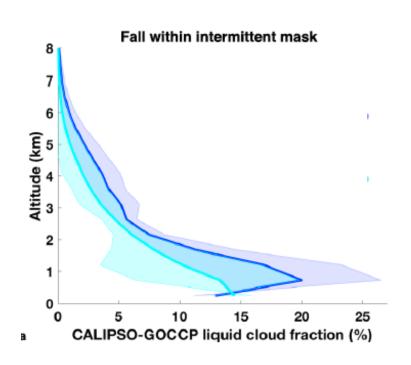
Figure from Kay et al. 2016 Review Paper DOI: 10.1007/s40641-016-0051-9



Observations show small impact of cloud-sea ice feedbacks on observed warming

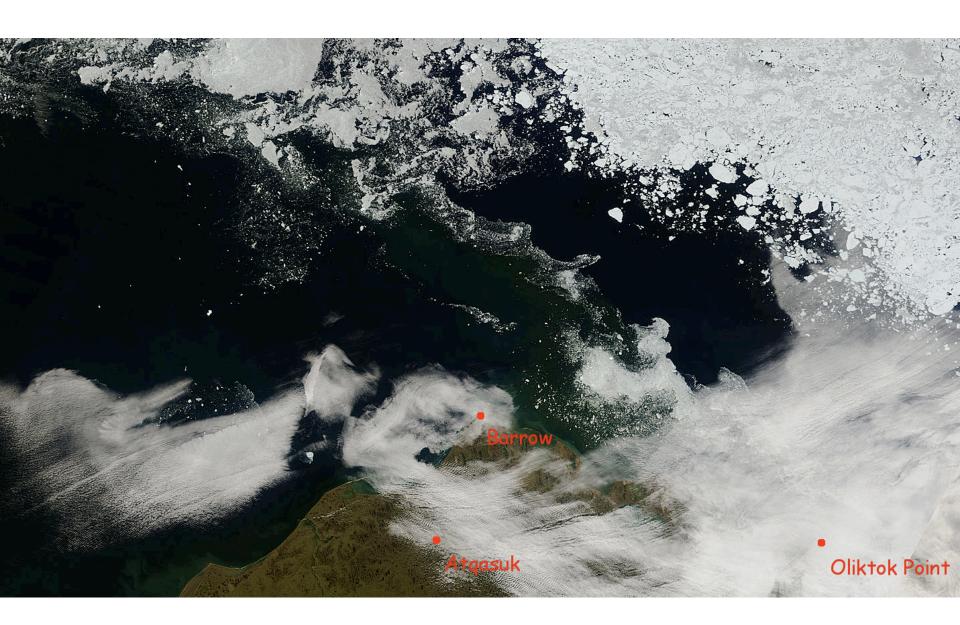


No evidence for summer cloud-sea ice feedback

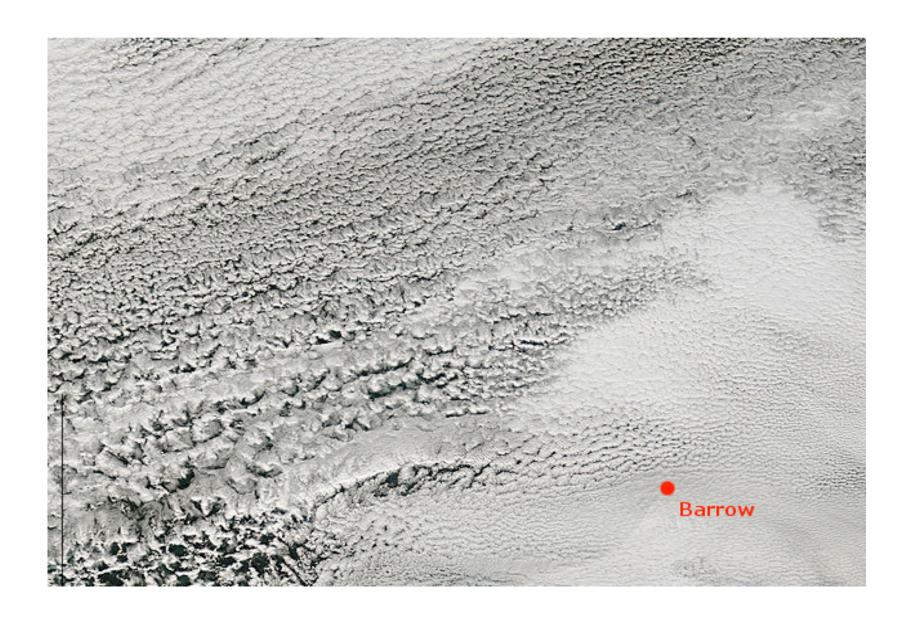


Weak cloud-sea ice feedback in Fall – shortwave and longwave compensate.

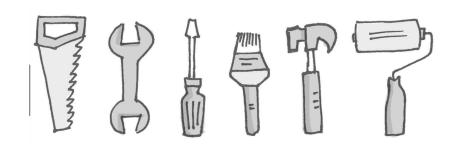
MODIS Visible Image July 23, 2007



MODIS Visible Image September 30, 2007



Why? What tools are best for Detection and Attribution of humancaused Arctic change?



THE COMMUNITY EARTH SYSTEM MODEL (CESM) LARGE ENSEMBLE PROJECT

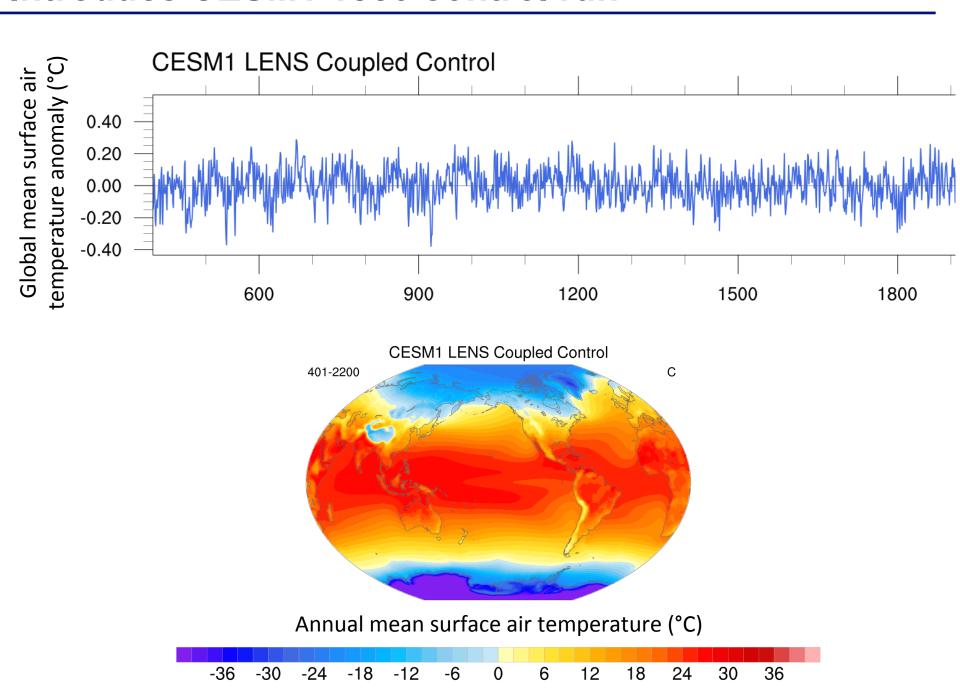
A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability

BY J. E. KAY, C. DESER, A. PHILLIPS, A. MAI, C. HANNAY, G. STRAND, J. M. ARBLASTER, S. C. BATES, G. DANABASOGLU, J. EDWARDS, M. HOLLAND, P. KUSHNER, J.-F. LAMARQUE, D. LAWRENCE, K. LINDSAY, A. MIDDLETON, E. MUNOZ, R. NEALE, K. OLESON, L. POLVANI, AND M. VERTENSTEIN

By simulating climate trajectories over the period 1920–2100 multiple times with small atmospheric initialization differences, but using the same model and external forcing, this community project provides a comprehensive resource for studying climate change in the presence of internal climate variability.

https://journals.ametsoc.org/doi/10.1175/BAMS-D-13-00255.1

Introduce CESM1 1850 control run



CESM Large Ensemble Experimental Design

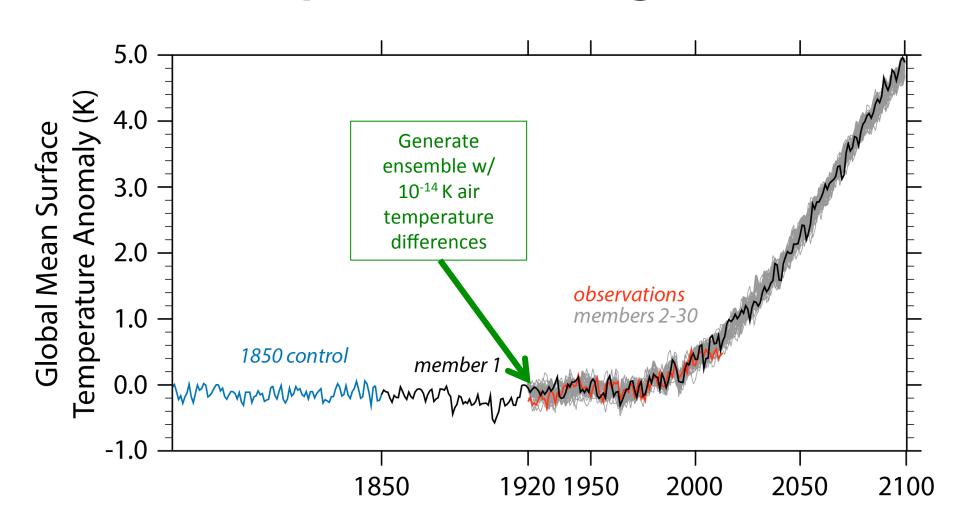
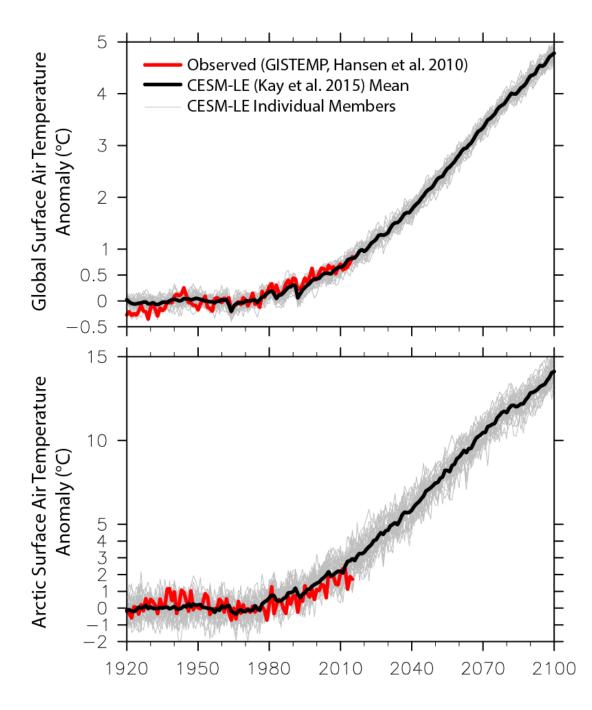
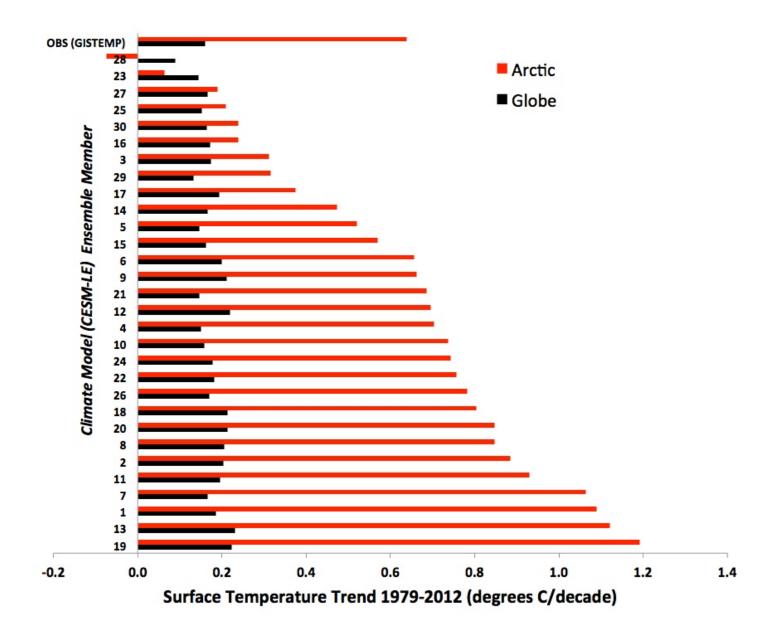


Figure 2 Kay et al. 2015

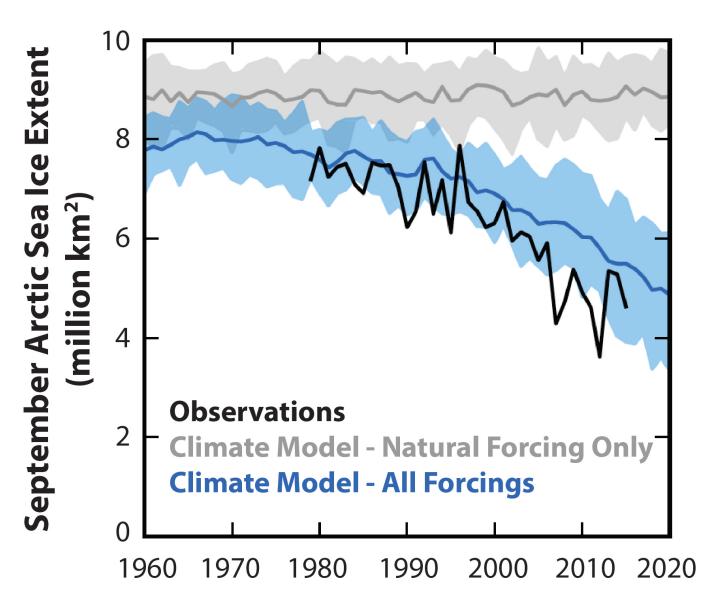
What has happened and what will happen under large increases in greenhouse gases (1000 ppm CO2 equivalent by 2100)?



Arctic vs. Global Warming (1979-2012)

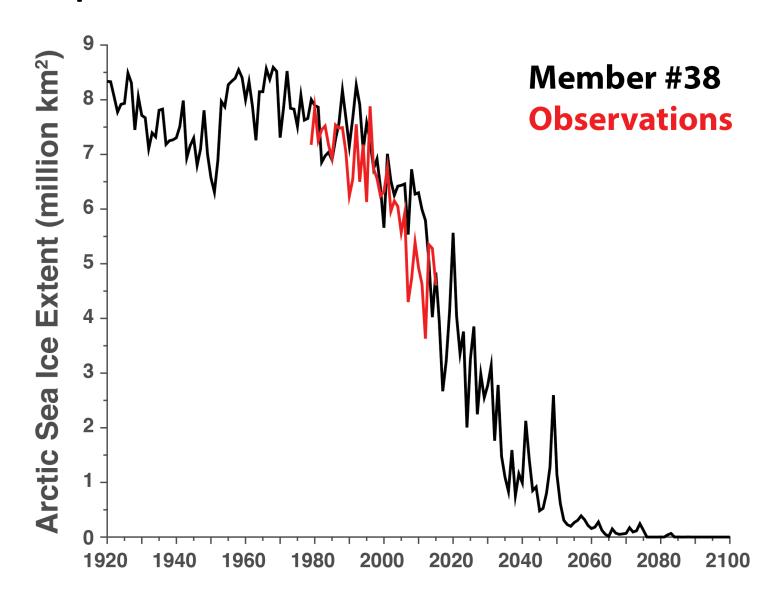


Arctic sea ice loss

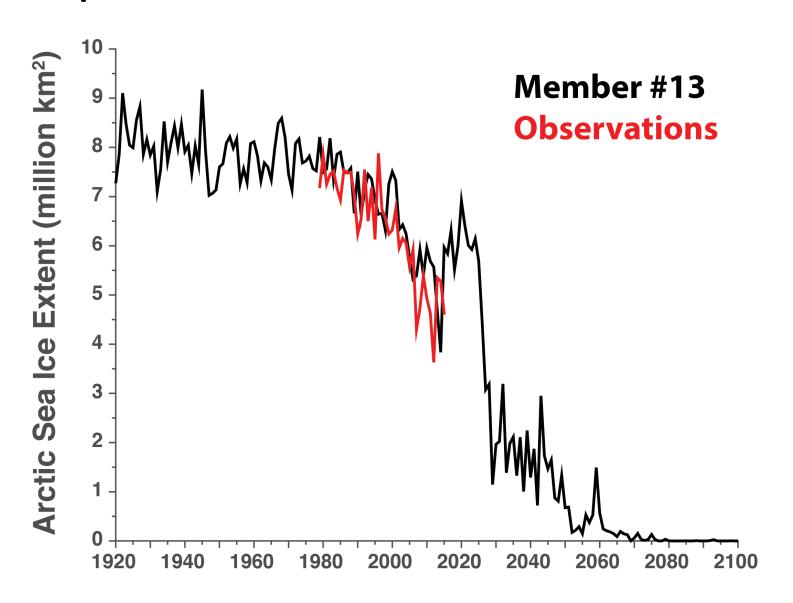


Adapted from Figure 1 Kirchmeier-Young et al. 2017

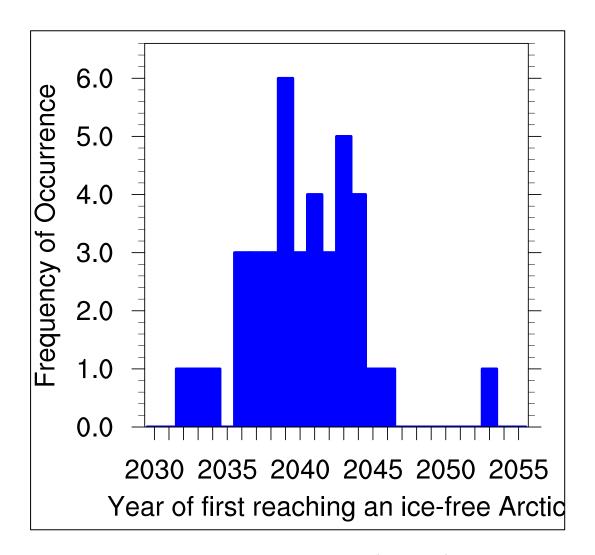
September Arctic Sea Ice Extent



September Arctic Sea Ice Extent



How predictable is the timing of a summer ice-free Arctic?



Internal variability introduces ~20 year uncertainty in the exact year when the Arctic goes ice-free in September.

Arctic (70-90 N) Surface Air Temperature in the CESM-LE When does a detectable forced climate change signal emerge?

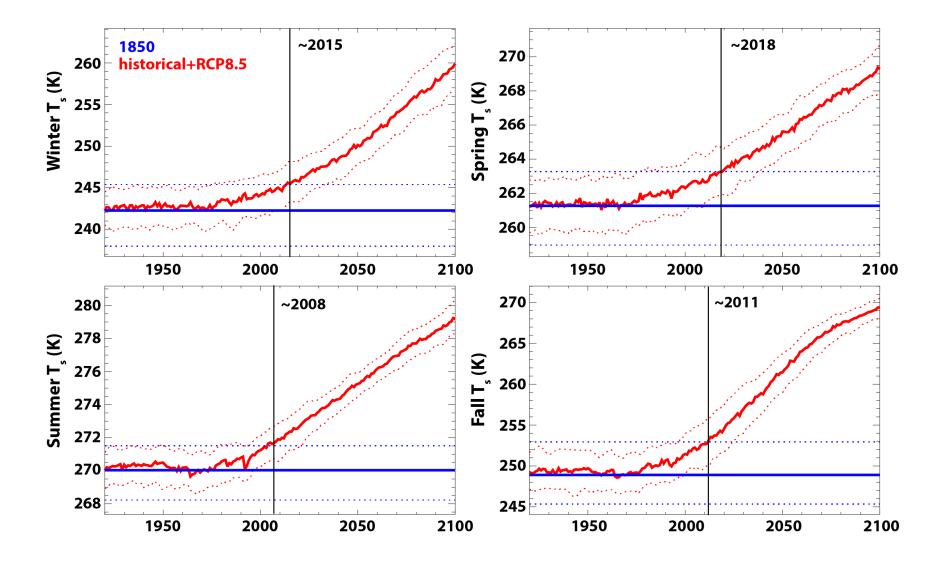


Figure courtesy Marika Holland/NSF 2018 Polar Modeling Workshop

CESM-LE Monthly Mean Arctic Surface Air Temperature

1850 histograms vs. 2005-2016 histograms

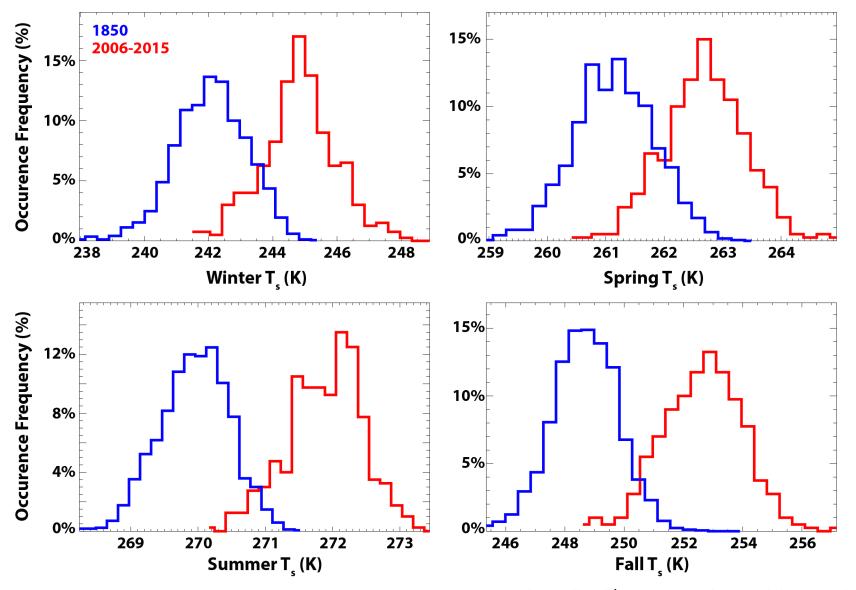
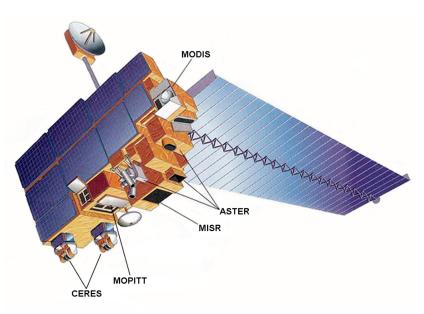
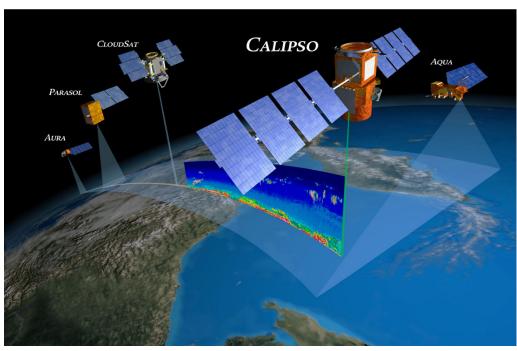


Figure courtesy Marika Holland/NSF 2018 Polar Modeling Workshop

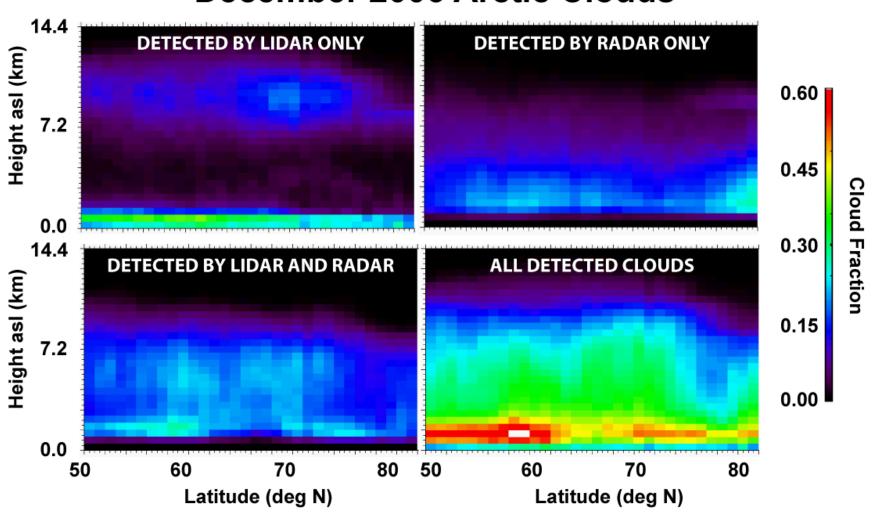
Can we detect the emergence of forced change with current and future satellites?





CloudSat (radar) and CALIOP (lidar) Synergy

December 2006 Arctic Clouds

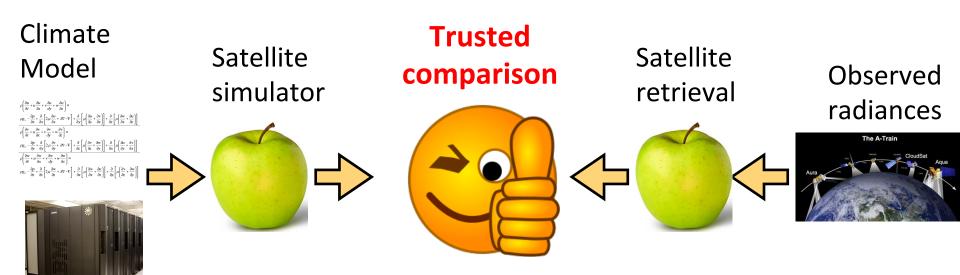


When compared to temperature, comparing models and observed clouds and precipitation is more difficult...

why?

Let's discuss!

Simulators help to reliably compare remote sensing observations to models



Take Home Message: When satellite simulators accurately mimic the observational process, they enable "apple-to-apple" comparisons between models and observations.

Established Example: Satellite simulators for clouds and precipitation ("COSP")

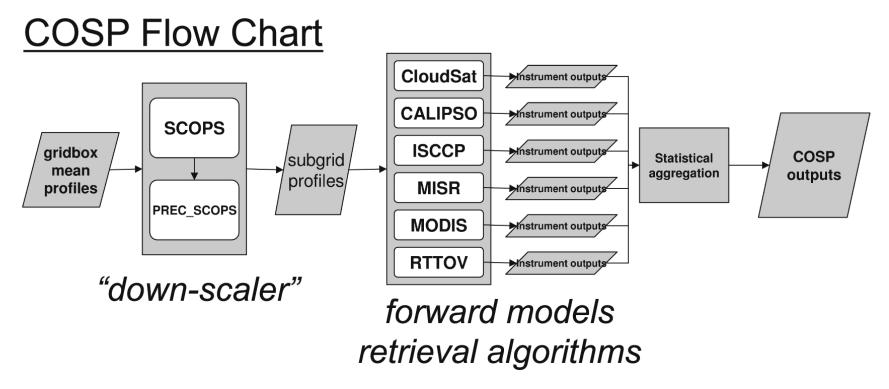


Figure credit: Jim Boyle, Alejandro Bodas-Salcedo and Stephen Klein

COSP Description Paper – Bodas-Salcedo et al. 2011 https://journals.ametsoc.org/doi/10.1175/2011BAMS2856.1

Demonstrating the importance of simulators for model evaluation

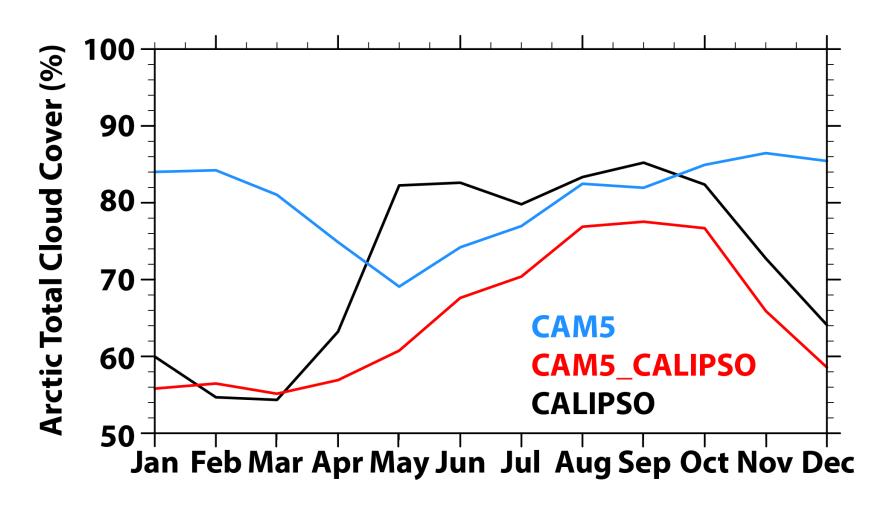
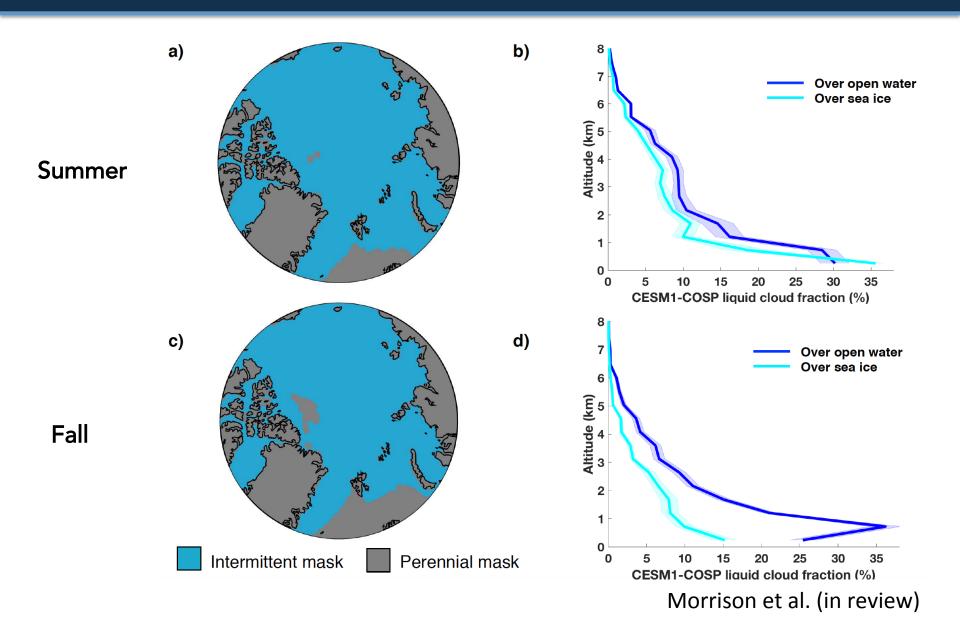
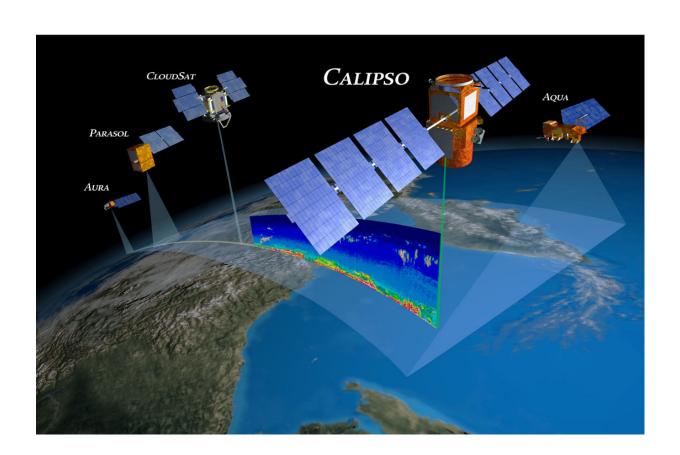


Figure from Kay et al. 2016 - DOI: 10.1007/s40641-016-0051-9

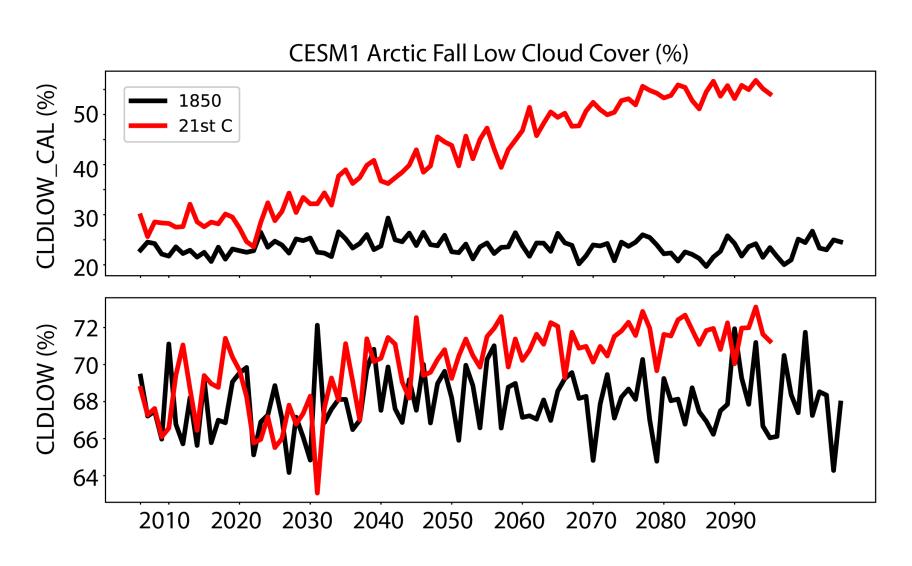
CESM1 matches observations: no change in summer, more clouds over open water than over sea ice in fall



Can we detect the emergence of forced change in clouds and precipitation with current and future satellites?



Results from a single ensemble member offshoot experiment from the CESM Large Ensemble.

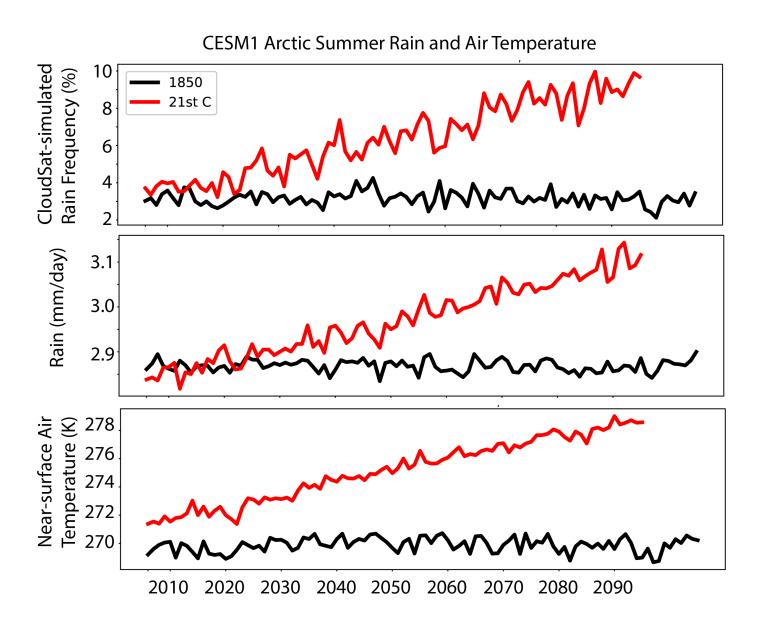


AHH!!! The model cloud cover variable (CLDLOW) gives a different answer than the lidar simulator variable (CLDLOW_LIDAR).

Why?

Using the model native cloud cover fields (i.e., CLDLOW) isn't telling you about the clouds that would be observed by a spaceborne lidar like CALIPSO (i.e., interacting with visible light).

What about precipitation? E.g., summer Arctic rain



Summary – Kay et al.

- 1) Forced Arctic climate change is currently emerging above internal climate variability. Timing depends on the metric for emergence and the physical variable under consideration.
 - 2) Large initial condition ensembles and simulators provide essential tools for connecting models and observations to understand the emergence of forced climate change.

EXTRA

Notes on Variables –

Variables in red are from the satellite simulators

CLDTOT is the model total cloud cover.

CLDLOW is the model low cloud cover.

CLDTOT_CAL is the total cloud fraction detected by a lidar (like CALIPSO)

CLDLOW_CAL is the low cloud fraction detected by a lidar (like CALIPSO)

SNOW is the annual mean snow amount.

RAIN is the annual mean rain amount.

RADAR_SNOW is the average annual frequency of snow detected by a 94 GHz radar (like CloudSat).

RADAR_RAIN is the average annual frequency of rain detected by a 94 GHz radar (like CloudSat).

Context from the 2018 NASA Decadal Survey...

TARGETED OBSERVABLE	SCIENCE & APPLICATIONS SUMMARY	SCI/APPS PRIORITIES (MI, VI, I)	RELATED ESAS 2007 and POR	IDENTIFIED NEED/GAP	CANDIDATE MEASUREMENT APPROACH	ESAS 2017 DISPOSITION
TO-5 Clouds, Convection, & Precipitation	properties Solid & liquid precipitation rate	- H-1a, 1b, 1c, 3b, 4b - W-1a, 2a, W3a, 4a, 9a, 10a - S-1c, 4b - E-3a - C-2a, 2g, 2h, 3f, 5d, 7e 8h	POR: CPR/EarthCARE, GPM, CloudSat, MODIS, VIIRS, SSMI, TROPICS	POR does not address diurnal cycle and does not cover precipitation after EarthCARE, GPM and SSMI, or snowfall, convection, and cloud dynamics after EarthCARE	Radar(s) and multi-frequency microwave radiometer Sampling with 1-4 km horiz & 250 m yest recolution & 0.2 mm/hr.	DESIGNATED PROGRAM ELEMENT Maximum development cost \$800M; considerable synergistic value in TO-5 being coordinated in time with TO-1 and TO-2

Challenge: How can you leverage a large ensemble if you only have one member with your diagnostics?

